Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 26(2): e16565, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356112

RESUMO

Acid mine drainage (AMD) waters are a severe environmental threat, due to their high metal content and low pH (pH <3). Current technologies treating AMD utilize neutrophilic sulfate-reducing microorganisms (SRMs), but acidophilic SRM could offer advantages. As AMDs are low in organics these processes require electron donor addition, which is often incompletely oxidized into organic acids (e.g., acetic acid). At low pH, acetic acid is undissociated and toxic to microorganisms. We investigated the stress response of the acetotrophic Acididesulfobacillus acetoxydans to acetic acid. A. acetoxydans was cultivated in bioreactors at pH 5.0 (optimum). For stress experiments, triplicate reactors were spiked until 7.5 mM of acetic acid and compared with (non-spiked) triplicate reactors for physiological, transcriptomic, and membrane lipid changes. After acetic acid spiking, the optical density initially dropped, followed by an adaptation phase during which growth resumed at a lower growth rate. Transcriptome analysis revealed a downregulation of genes involved in glutamate and aspartate synthesis following spiking. Membrane lipid analysis revealed a decrease in iso and anteiso fatty acid relative abundance; and an increase of acetyl-CoA as a fatty acid precursor. These adaptations allow A. acetoxydans to detoxify acetic acid, creating milder conditions for other microorganisms in AMD environments.


Assuntos
Ácido Acético , Sulfatos , Reatores Biológicos , Ácidos , Ácidos Graxos , Lipídeos de Membrana
2.
Sci Adv ; 8(50): eabq8652, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36525503

RESUMO

Bacterial membranes are composed of fatty acids (FAs) ester-linked to glycerol-3-phosphate, while archaea have membranes made of isoprenoid chains ether-linked to glycerol-1-phosphate. Many archaeal species organize their membrane as a monolayer of membrane-spanning lipids (MSLs). Exceptions to this "lipid divide" are the production by some bacterial species of (ether-bound) MSLs, formed by tail-to-tail condensation of FAs resulting in the formation of (iso) diabolic acids (DAs), which are the likely precursors of paleoclimatological relevant branched glycerol dialkyl glycerol tetraether molecules. However, the enzymes responsible for their production are unknown. Here, we report the discovery of bacterial enzymes responsible for the condensation reaction of FAs and for ether bond formation and confirm that the building blocks of iso-DA are branched iso-FAs. Phylogenomic analyses of the key biosynthetic genes reveal a much wider diversity of potential MSL (ether)-producing bacteria than previously thought, with importantt implications for our understanding of the evolution of lipid membranes.


Assuntos
Éter , Glicerol , Archaea/genética , Archaea/química , Bactérias , Lipídeos de Membrana/química , Éteres/química , Ácidos Graxos , Fosfatos
3.
Syst Appl Microbiol ; 45(6): 126356, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36108543

RESUMO

A pure culture of alkaliphilic haloarchaeon strain AArc-ST capable of anaerobic growth by carbohydrate-dependent sulfur respiration was obtained from hypersaline lakes in southwestern Siberia. According to phylogenetic analysis, AArc-ST formed a new genus level branch most related to the genus Natronoarchaeum in the order Halobacteriales. The strain is facultatively anaerobic with strictly respiratory metabolism growing either by anaerobic respiration with elemental sulfur and thiosulfate as the electron acceptors or by aerobic respiration at microoxic conditions. Thiosulfate is reduced partially to sulfide and sulfite. It is a first sulfur-reducing alkaliphilic haloarchaeon utilizing sugars, starch and glycerol as substrates for anaerobic growth. It is extremely halophilic (optimum at 3.5 M total Na+) and obligately alkaliphilic (optimum at pH 9.5). The dominant polar lipids include PG and PGP-Me with the archaeol (C20-C20) or extended archaeol (C20-C25) cores. The dominant respiratory lipoquinone is MK-8:8. On the basis of unique physiological properties and results of phylogenetic analysis, the soda lake isolate is suggested to be classified into a novel genus and species Natranaeroarchaeum sulfidigenes gen. nov., sp. nov. (=JCM 34033T = UNIQEM U1000T). Furthermore, on the bases of phylogenomic reconstruction, a new family Natronoarchaeaceae fam. nov. is proposed within the order Halobacteriales incorporating Natranaeroarchaeum and three related genera: Natronoarchaeum, Salinarchaeum and Halostella.


Assuntos
Halobacteriales , Lagos , Filogenia , Tiossulfatos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Enxofre/metabolismo , Carboidratos
4.
Syst Appl Microbiol ; 45(4): 126336, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35644061

RESUMO

Several pure cultures of alkaliphilic haloaloarchaea were enriched and isolated from hypersaline soda lakes in southwestern Siberia using amylopectin and fructans as substrates. Phylogenomic analysis placed the isolates into two distinct groups within the class Halobacteria. Four isolates forming group 1 were closely related to a recently described Natranaeroarchaeum sulfidigenes and the other three strains forming group 2 represent a novel genus-level phylogenetic lineage. All isolates are saccharolytic archaea growing with various starch-like alpha-glucans including soluble starch, amylopectin, dextrin, glycogen, pullulane and cyclodextrin. In addition, group 1 can use levan while group 2 - inulin (plant storage beta-fructans). Group 1 strains can also grow anaerobically with either glucose or maltose using elemental sulfur as the electron acceptor. Both groups are moderately alkaliphilic with a pH range for growth from 7.2 to 9.3 (optimum between 8.0-8.8) and low Mg-demanding extreme halophiles growing optimally at 4 M total Na+. The major respiratory menaquinone is MK-8:8 and the core biphytanyl lipids are dominated by archaeol (C20-C20) and a less abundant extended archaeol (C20-C25) with PG and PGP-Me as polar groups. The four isolates of group 1 are suggested to be classified into a new species as Natranaeroarchaeum aerophilus sp. nov. (type strain AArc-St1-1T = JCM 32519T). The three isolates of group 2 are proposed to form a new genus and species for which the name Natronocalculus amylovorans gen. nov., sp. nov. is suggested (type strain AArc-St2T = JCM 32475T).


Assuntos
Amilopectina , Lagos , DNA Bacteriano/genética , Ácidos Graxos/análise , Frutanos , Lagos/microbiologia , Filogenia , Polissacarídeos Bacterianos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sibéria
5.
ISME Commun ; 2(1): 121, 2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-37938789

RESUMO

Sulfurimonas species are among the most abundant sulfur-oxidizing bacteria in the marine environment. They are capable of using different electron acceptors, this metabolic flexibility is favorable for their niche adaptation in redoxclines. When oxygen is depleted, most Sulfurimonas spp. (e.g., Sulfurimonas gotlandica) use nitrate ([Formula: see text]) as an electron acceptor to oxidize sulfur, including sulfide (HS-), S0 and thiosulfate, for energy production. Candidatus Sulfurimonas marisnigri SoZ1 and Candidatus Sulfurimonas baltica GD2, recently isolated from the redoxclines of the Black Sea and Baltic Sea respectively, have been shown to use manganese dioxide (MnO2) rather than [Formula: see text] for sulfur oxidation. The use of different electron acceptors is also dependent on differences in the electron transport chains embedded in the cellular membrane, therefore changes in the membrane, including its lipid composition, are expected but are so far unexplored. Here, we used untargeted lipidomic analysis to reveal changes in the composition of the lipidomes of three representative Sulfurimonas species grown using either [Formula: see text] and MnO2. We found that all Sulfurimonas spp. produce a series of novel phosphatidyldiazoalkyl-diacylglycerol lipids. Ca. Sulfurimonas baltica GD2 adapts its membrane lipid composition depending on the electron acceptors it utilizes for growth and survival. When carrying out MnO2-dependent sulfur oxidation, the novel phosphatidyldiazoalkyl-diacylglycerol headgroup comprises shorter alkyl moieties than when sulfur oxidation is [Formula: see text]-dependent. This is the first report of membrane lipid adaptation when an organism is grown with different electron acceptors. We suggest novel diazoalkyl lipids have the potential to be used as a biomarker for different conditions in redox-stratified systems.

6.
Appl Environ Microbiol ; 88(2): e0176321, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-34731048

RESUMO

Membrane-spanning lipids are present in a wide variety of archaea, but they are rarely in bacteria. Nevertheless, the (hyper)thermophilic members of the order Thermotogales harbor tetraester, tetraether, and mixed ether/ester membrane-spanning lipids mostly composed of core lipids derived from diabolic acids, C30, C32, and C34 dicarboxylic acids with two adjacent mid-chain methyl substituents. Lipid analysis of Thermotoga maritima across growth phases revealed a decrease of the relative abundance of fatty acids together with an increase of diabolic acids with independence of growth temperature. We also identified isomers of C30 and C32 diabolic acids, i.e., dicarboxylic acids with only one methyl group at C-15. Their distribution suggests they are products of the condensation reaction but are preferably produced when the length of the acyl chains is not optimal. Compared with growth at the optimal temperature of 80°C, an increase of glycerol ether-derived lipids was observed at 55°C. Our analysis only detected diabolic acid-containing intact polar lipids with phosphoglycerol (PG) head groups. Considering these findings, we hypothesize a biosynthetic pathway for the synthesis of membrane-spanning lipids based on PG polar lipid formation, suggesting that the protein catalyzing this process is a membrane protein. We also identified, by genomic and protein domain analyses, a gene coding for a putative plasmalogen synthase homologue in T. maritima that is also present in other bacteria producing sn-1-alkyl ether lipids but not plasmalogens, suggesting it is involved in the conversion of the ester-to-ether bond in the diabolic acids bound in membrane-spanning lipids. IMPORTANCE Membrane-spanning lipids are unique compounds found in most archaeal membranes, but they are also present in specific bacterial groups like the Thermotogales. The synthesis and physiological role of membrane-spanning lipids in bacteria represent an evolutionary and biochemical open question that points to the differentiation of the membrane lipid composition. Understanding the formation of membrane-spanning lipids is crucial to solving this question and identifying the enzymatic and biochemical mechanism performing this procedure. In the present work, we found changes at the core lipid level, and we propose that the growth phase drives the biosynthesis of these lipids rather than temperature. Our results identified physiological conditions influencing the membrane-spanning lipid biosynthetic process, which can further clarify the pathway leading to the biosynthesis of these compounds.


Assuntos
Lipídeos de Membrana , Thermotoga maritima , Ácidos Dicarboxílicos , Éter , Éteres , Lipídeos de Membrana/metabolismo , Temperatura , Thermotoga maritima/genética , Thermotoga maritima/metabolismo
7.
Environ Microbiol Rep ; 13(6): 899-910, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34668338

RESUMO

Members of the Psychrilyobacter spp. of the phylum Fusobacteria have been recently suggested to be amongst the most significant primary degraders of the detrital organic matter in sulfidic marine habitats, despite representing only a small proportion (<0.1%) of the microbial community. In this study, we have isolated a previously uncultured Psychrilyobacter species (strains SD5T and BL5; Psychrilyobacter piezotolerans sp. nov.) from the sulfidic waters (i.e., 2000 m depth) of the Black Sea and investigated its physiology and genomic capability in order to better understand potential ecological adaptation strategies. P. piezotolerans utilized a broad range of organic substituents (carbohydrates and proteins) and, remarkably, grew at sulfide concentrations up to 32 mM. These flexible physiological properties were supported by the presence of the respective metabolic pathways in the genomes of both strains. Growth at varying hydrostatic pressure (0.1-50 MPa) was sustained by modifying its membrane lipid composition. Thus, we have isolated a novel member of the 'rare biosphere', which endures the extreme conditions and may play a significant role in the degradation of detrital organic matter sinking into the sulfidic waters of the Black Sea.


Assuntos
Fusobactérias , Microbiota , Mar Negro , Fusobactérias/genética , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Sulfetos
8.
Syst Appl Microbiol ; 44(6): 126249, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34547593

RESUMO

Nine pure cultures of neutrophilic haloaloarchaea capable of anaerobic growth by carbohydrate-dependent sulfur respiration were isolated from hypersaline lakes in southwestern Siberia and southern Russia. According to phylogenomic analysis the isolates were closely related to each other and formed a new species within the genus Halapricum (family Haloarculaceae). They have three types of catabolism: fermentative, resulting in H2 formation; anaerobic respiration using sulfur compounds as e-acceptors and aerobic respiration. Apart from elemental sulfur, all isolates can also use three different sulfoxides as acceptors and the type strain also grows with thiosulfate, reducing it partially to sulfide and sulfite. All strains utilized sugars and glycerol as the e-donors and C source for anaerobic growth and some can also grow with alpha-glucans, such as starch and dextrins. The major respiratory menaquinones are MK-8:8 and MK-8:7, but 5-19% consists of "thermoplasmata" quinones (MMK-8:8 and MMK-8:7), whose occurrence in haloarchaea is unprecedented. On the basis of their unique physiological properties and results of phylogenomic analysis, the isolates are suggested to be classified into a novel species Halapricum desulfuricans sp. nov. (type strain HSR12-2T = JCM 34032T = UNIQEM U1001T).


Assuntos
Halobacteriales , Lagos , Carboidratos , DNA Bacteriano , Halobacteriales/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Enxofre
9.
Front Microbiol ; 12: 656589, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122372

RESUMO

Klebsiella sp. strain AqSCr, isolated from Cr(VI)-polluted groundwater, reduces Cr(VI) both aerobically and anaerobically and resists up 34 mM Cr(VI); this resistance is independent of the ChrA efflux transporter. In this study, we report the whole genome sequence and the transcriptional profile by RNA-Seq of strain AqSCr under Cr(VI)-adapted conditions and found 255 upregulated and 240 downregulated genes compared to controls without Cr(VI) supplementation. Genes differentially transcribed were mostly associated with oxidative stress response, DNA repair and replication, sulfur starvation response, envelope-osmotic stress response, fatty acid (FA) metabolism, ribosomal subunits, and energy metabolism. Among them, genes not previously associated with chromium resistance, for example, cybB, encoding a putative superoxide oxidase (SOO), gltA2, encoding an alternative citrate synthase, and des, encoding a FA desaturase, were upregulated. The sodA gene encoding a manganese superoxide dismutase was upregulated in the presence of Cr(VI), whereas sodB encoding an iron superoxide dismutase was downregulated. Cr(VI) resistance mechanisms in strain AqSCr seem to be orchestrated by the alternative sigma factors fecl, rpoE, and rpoS (all of them upregulated). Membrane lipid analysis of the Cr(IV)-adapted strain showed a lower proportion of unsaturated lipids with respect to the control, which we hypothesized could result from unsaturated lipid peroxidation followed by degradation, together with de novo synthesis mediated by the upregulated FA desaturase-encoding gene, des. This report helps to elucidate both Cr(VI) toxicity targets and global bacterial response to Cr(VI).

10.
Environ Microbiol ; 23(7): 3460-3476, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32955149

RESUMO

An anaerobic enrichment with CO from sediments of hypersaline soda lakes resulted in a methane-forming binary culture, whereby CO was utilized by a bacterium and not the methanogenic partner. The bacterial isolate ANCO1 forms a deep-branching phylogenetic lineage at the level of a new family within the class 'Natranaerobiia'. It is an extreme haloalkaliphilic and moderate thermophilic acetogen utilizing CO, formate, pyruvate and lactate as electron donors and thiosulfate, nitrate (reduced to ammonia) and fumarate as electron acceptors. The genome of ANCO1 encodes a full Wood-Ljungdahl pathway allowing for CO oxidation and acetogenic conversion of pyruvate. A locus encoding Nap nitrate reductase/NrfA ammonifying nitrite reductase is also present. Thiosulfate respiration is encoded by a Phs/Psr-like operon. The organism obviously relies on Na-based bioenergetics, since the genome encodes for the Na+ -Rnf complex, Na+ -F1F0 ATPase and Na+ -translocating decarboxylase. Glycine betaine serves as a compatible solute. ANCO1 has an unusual membrane polar lipid composition dominated by diethers, more common among archaea, probably a result of adaptation to multiple extremophilic conditions. Overall, ANCO1 represents a unique example of a triple extremophilic CO-oxidizing anaerobe and is classified as a novel genus and species Natranaerofaba carboxydovora in a novel family Natranaerofabacea.


Assuntos
Euryarchaeota , Lagos , Crescimento Quimioautotrófico , DNA Bacteriano , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
11.
Syst Appl Microbiol ; 43(5): 126122, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32847788

RESUMO

Diversity analyses of microbial enrichments obtained from deep sulfidic water (2000 m) collected from the Black Sea indicated the presence of eleven novel putative lineages of bacteria affiliated to the family Marinifilaceae of the phylum Bacteroidetes. Pure cultures were obtained for four strains (i.e. M1PT, M3P, A4T and 44) of this family, which could be grouped into two different clades based on their 16S rRNA gene sequences. All four strains were Gram-negative, rod-shaped and facultative anaerobic bacteria. The genomes of all strains were sequenced and physiological analyses were performed. All strains utilized a wide range of carbon sources, which was supported by the presence of the pathways involved in carbon utilization encoded by their genomes. The strains were able to grow at elevated hydrostatic pressure (up to 50 MPa), which coincided with increased production of unsaturated and branched fatty acids, and a decrease in hydroxy fatty acids. Intact polar lipid analysis of all four strains showed the production of ornithine lipids, phosphatidylethanolamines and capnine lipids as major intact polar lipids (IPLs). Genes involved in hopanoid biosynthesis were also identified. However, bacteriohopanepolyols (BHPs) were not detected in the strains. Based on distinct physiological, chemotaxonomic, genotypic and phylogenetic differences compared to other members of the genera Ancylomarina and Labilibaculum, it was concluded that strains M1PT and A4T represented two novel species for which the names Ancylomarina euxinus sp. nov. and Labilibaculum euxinus sp. nov., respectively, are proposed.


Assuntos
Bacteroidetes/classificação , Bacteroidetes/isolamento & purificação , Água do Mar/química , Água do Mar/microbiologia , Sulfetos/análise , Adaptação Fisiológica , Anaerobiose , Técnicas de Tipagem Bacteriana , Bacteroidetes/genética , Bacteroidetes/fisiologia , Composição de Bases , Mar Negro , Meios de Cultura , DNA Bacteriano/química , DNA Bacteriano/genética , Ácidos Graxos/análise , Genes de RNAr , Genoma Bacteriano , Genótipo , Pressão Hidrostática , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Terminologia como Assunto
12.
Microorganisms ; 8(6)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570748

RESUMO

Recently, we isolated two marine strains, F1T and F21T, which together with Kiritimatiella glycovorans L21-Fru-ABT are the only pure cultures of the class Kiritimatiellae within the phylum Verrucomicrobiota. Here, we present an in-depth genome-guided characterization of both isolates with emphasis on their exopolysaccharide synthesis. The strains only grew fermentatively on simple carbohydrates and sulfated polysaccharides. Strains F1T, F21T and K. glycovorans reduced elemental sulfur, ferric citrate and anthraquinone-2,6-disulfonate during anaerobic growth on sugars. Both strains produced exopolysaccharides during stationary phase, probably with intracellularly stored glycogen as energy and carbon source. Exopolysaccharides included N-sulfated polysaccharides probably containing hexosamines and thus resembling glycosaminoglycans. This implies that the isolates can both degrade and produce sulfated polysaccharides. Both strains encoded an unprecedently high number of glycoside hydrolase genes (422 and 388, respectively), including prevalent alpha-L-fucosidase genes, which may be necessary for degrading complex sulfated polysaccharides such as fucoidan. Strain F21T encoded three putative glycosaminoglycan sulfotransferases and a putative sulfate glycosaminoglycan biosynthesis gene cluster. Based on phylogenetic and chemotaxonomic analyses, we propose the taxa Pontiella desulfatans F1T gen. nov., sp. nov. and Pontiella sulfatireligans F21T sp. nov. as representatives of the Pontiellaceae fam. nov. within the class Kiritimatiellae.

13.
Front Microbiol ; 10: 377, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930858

RESUMO

We analyzed the polar membrane lipids of 13 strains of halo(alkali)philic euryarchaea from hypersaline lakes. Nine belong to the class Halobacteria, representing two functional groups: aerobic polysaccharide utilizers and sulfur-respiring anaerobes. The other four strains represent halo(alkali)philic methanogens from the class Methanomicrobia and a recently discovered class Methanonatronarchaeia. A wide range of polar lipids were detected across the 13 strains including dialkyl glycerol diethers (archaeols), membrane-spanning glycerol tetraethers and diether-based cardiolipins. The archaeols contained a range of core lipid structures, including combinations of C20 and C25 isoprenoidal alkyl chains, unsaturations, and hydroxy moieties. Several diether lipids were novel, including: (a) a phosphatidylglycerolhexose (PG-Gly) headgroup, (b) a N,N,N-trimethyl aminopentanetetrol (APT)-like lipid with a methoxy group in place of a hydroxy group on the pentanetetrol, (c) a series of polar lipids with a headgroup with elemental composition of either C12H25NO13S or C12H25NO16S2, and (d) novel cardiolipins containing a putative phosphatidylglycerolphosphate glycerophosphate (PGPGP) polar moiety. We found that the lipid distribution of the 13 strains could be generally separated into two groups, the methanogens (group) and the Halobacteria (class) based on the presence of specific core lipids. Within the methanogens, adaption to a high or more moderate salt concentration resulted in different ratios of glycerol dialkyl glycerol tetraethers (GDGTs) to archaeol. The methanogen Methanosalsum natronophilum AME2T had the most complex diether lipid composition of any of the 13 strains, including hydroxy archaeol and macrocyclic archaeol which we surmise is an order-specific membrane adaption. The zwitterionic headgroups APT and APT-Me were detected only in the Methanomicrobiales member Methanocalculus alkaliphilus AMF2T which also contained the highest level of unsaturated lipids. Only alkaliphilic members of the Natrialbales order contained PGPGP cardiolipins and the PG-Gly headgroup. The four analyzed neutrophilic members of the Halobacteria were characterized by the presence of sulfur-containing headgroups and glycolipids. The presence of cardiolipins with one or more i-C25 alkyl chains, generally termed extended archaeol (EXT-AR), in one of the Methanonatronarchaeia strains was unexpected as only one other order of methanogenic archaea has been reported to produce EXT-AR. We examined this further by looking into the genomic potential of various archaea to produce EXT-AR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...